ar X iv : 0 81 0 . 09 81 v 2 [ m at h . A G ] 1 3 Ju n 20 09 QUANTUM K - THEORY OF GRASSMANNIANS

نویسنده

  • LEONARDO C. MIHALCEA
چکیده

We show that (equivariant) K-theoretic 3-point Gromov-Witten invariants of genus zero on a Grassmann variety are equal to triple intersections computed in the (equivariant) K-theory of a two-step flag manifold, thus generalizing an earlier result of Buch, Kresch, and Tamvakis. In the process we show that the Gromov-Witten variety of curves passing through 3 general points is irreducible and rational. Our applications include Pieri and Giambelli formulas for the quantum K-theory ring of a Grassmannian, which determine the multiplication in this ring. We also compute the dual Schubert basis for this ring, and show that its structure constants satisfy S3-symmetry. Our formula for Gromov-Witten invariants can be partially generalized to cominuscule homogeneous spaces by using a construction of Chaput, Manivel, and Perrin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 81 1 . 40 90 v 3 [ m at h . Q A ] 2 3 Ju n 20 09 MODULE CATEGORIES OVER POINTED HOPF ALGEBRAS

We develop some techniques for studying exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).

متن کامل

ar X iv : 0 81 1 . 23 46 v 5 [ m at h . A G ] 3 0 Ju n 20 09 EFFECTIVE ALGEBRAIC DEGENERACY

We show that for every generic smooth projective hypersurface X ⊂ P, n > 2, there exists a proper algebraic subvariety Y $ X such that every nonconstant entire holomorphic curve f : C → X has image f(C) which lies in Y , provided degX > 2 5 . Table of contents

متن کامل

ar X iv : 0 80 9 . 15 36 v 2 [ m at h . D G ] 1 5 Ju n 20 09 Tight Lagrangian surfaces in S 2 × S 2 ∗ Hiroshi

We determine all tight Lagrangian surfaces in S2×S2. In particular, globally tight Lagrangian surfaces in S2 × S2 are nothing but real forms.

متن کامل

ar X iv : 0 81 2 . 04 22 v 2 [ m at h . D G ] 1 6 Ja n 20 09 On the ∂ - and ∂̄ - Operators of a Generalized Complex Structure ∗

In this note, we prove that the ∂and ∂̄-operators introduced by Gualtieri for a generalized complex structure coincide with the d̆∗and ∂̆-operators introduced by Alekseev-Xu for Evens-Lu-Weinstein modules of a Lie bialgebroid.

متن کامل

ar X iv : 0 80 5 . 12 35 v 2 [ m at h . G R ] 3 0 Ju n 20 09 SCHUR – WEYL DUALITY OVER FINITE FIELDS

We prove a version of Schur–Weyl duality over finite fields. We prove that for any field k, if k has at least r + 1 elements, then Schur– Weyl duality holds for the rth tensor power of a finite dimensional vector space V . Moreover, if the dimension of V is at least r + 1, the natural map kSr → EndGL(V )(V ) is an isomorphism. This isomorphism may fail if dimk V is not strictly larger than r.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009